KI-Algorithmus: smarte Haltestellenerkennung für digitale Assistenten

So findet unser digitaler Assistent die Haltestelle, die ich wirklich meinte.

Wir PROJEKTIONISTEN entwickeln digitale KI Assistenten. Wir konzentrieren uns dabei auf das natürlichsprachliche Anwendungsfeld der Smart Speaker, Chatbots und Assistenten-In-App Lösungen.

In diesem Umfeld ist es eine besonders spannende Aufgabe, die Entität Haltestelle in natürlichsprachlichen Aussagen korrekt zu erkennen. Der Fachbegriff dafür ist named-entity recognition. Aus dem Satz...

"Wie komme ich am schnellsten vom Marktplatz zum Hauptbahnhof?"

...müssen u. a. Start und Ziel erkannt werden. Für die intent classification (Welche Absicht haben Nutzende - in dem Fall die Intention eine Verbindungsauskunft zu erhalten) und die named-entity recognition haben wir ein Machine Learning Model entwickelt und trainiert. Für unseren Beispielsatz erhalten wir zwei Haltestellen:

Starthaltestelle: Marktplatz
Zielhaltestelle: Hauptbahnhof

Beide Entitäten wurden vom Model korrekt identifiziert. So weit, so gut, so einfach. Ende der Story und des Artikels? Nein! Wir müssen die Nutzer:innenabsicht der Verbindungsauskunft noch erfüllen.

Eins, zwei, drei, ganz viele

Um Nutzenden nun eine Verbindungsinformation zur Verfügung stellen zu können, muss ein ÖPNV-Auskunftssystem mit dem gewünschten Start und Ziel befragt werden. Solche Systeme können am besten mit eindeutigen IDs umgehen. Die named-entity recognition gibt uns aber nur die Zeichenkette Marktplatz. Auskunftssysteme haben jedoch einen Schnittstellenaufruf, um eine Haltestelle mit Texteingabe zu suchen.

Wenn wir uns am Beispiel eines regionalen Kunden von uns einmal alle Haltestellen anschauen, die Marktplatz heißen, dann sehen wir ein Problem. Eine ganz lange Liste von Haltestellen, die gleich heißen. Und das ist nur ein kleiner Teil Deutschlands.

Haltestellen-Vorschlagliste für die Suche nach Marktplatz

Der aktuelle Weg in Apps oder auf Webseiten ist solch eine Antwort als Vorschlagsliste visuell Nutzenden darzustellen. Die Liste kann überflogen und durch einen einfachen Klick die gewünschte Haltestelle ausgewählt werden. Aber natürlichsprachlich? Wie identifizieren wir nun die korrekte Haltestelle? Die Liste vorzulesen und per Sprache auszuwählen erscheint sehr umständlich. Nutzende jetzt immer die Stadt zur Haltestelle dazu sagen zu lassen bzw. bei solchen Haltestellen die Stadt immer zu erfragen für eine eindeutige Zuordnung klingt auch nicht sonderlich smart. Das muss doch besser gehen.

KI Haltestellenerkennung

Die Auskunftssysteme können uns in Ermangelung einer passenden Schnittstelle für den Anwendungsfall nicht helfen. Also entsteht ein eigener KI Algorithmus!

In einem ersten Schritt soll das Ergebnis der eigenen Haltestellensuche mindestens genauso gut sein, wie die Suche über die vorhandenen Auskunftssysteme, um unseren Algorithmus dann für den spezifischen Anwendungsfall weiter verfeinern zu können. Der entwickelte Algorithmus bewertet und vergleicht die Eingabe mit Haltestellendaten. Ein Bewertungsverfahren entscheidet, welche Haltestellen wie gut zur Eingabe passen. Um einen ersten Vergleichstest nicht zu einfach zu machen, haben wir in die Eingabe sowohl einen typischen Tippfehler, als auch eine typische Abkürzung eingebaut. Statt Marktplatz geben wir Maktplz ein.

Vergleichen wir die Varianten:

Ergebnistabelle Vergleich der beiden Varianten "Auskunftssystem"und "1Klang Algorithmus"

Das Ergebnis ist erfreulich. Wir erhalten für den Input Maktplz in beiden Systemen viele Marktplätze. Auffällig ist noch der Unterschied der Ausführungszeit. Wir können ohne das Auskunftssystem Haltestellen nicht nur gleich "gut", sondern sogar deutlich effizienter ermitteln. Für Nutzende heißt das – eine schnellere Antwort und Informationen nach einer Anfrage.

Stand jetzt haben wir allerdings das Hauptproblem noch gar nicht adressiert. Wie identifizieren wir nun, welcher Marktplatz gemeint ist?

Standortabhängige Haltestellenerkennung

ÖPNV-Anfragen sind meist eher lokal begrenzt. Wenn von Nutzenden die Haltestelle nicht näher spezifiziert ist, ist meist die im Umkreis gemeint. Dementsprechend möchten wir den Standort des Nutzenden mit in die Suche einbeziehen. Durch die Verschneidung von OpenStreetMap (OSM) Geolocation-Daten erhalten wir durch eine spezielle Vorverarbeitung eine standortsensitive Suche. Der Suchraum wird anhand einer Koordinate eingeschränkt. Eine spezielle Datenstruktur ermöglicht einen effizienten Zugriff auf Bereiche und Haltestellen, die sich im Umfeld des Nutzenden befinden. Der Suchraum kann somit auch dynamisch erweitert oder verengt werden, wenn die Ergebnisse nicht zufriedenstellend sind – sprich das Bewertungsverfahren zu schlechte Ergebnisse ermittelt. Dieser Suchraum ist Ausgangspunkt für den bereits vorgestellten Algorithmus zur Haltestellenerkennung.

Nehmen wir das Beispiel von eben und stellen alle Standorte der Haltestelle Marktplatz im Gebiet eines Kunden von uns auf einer Karte dar. Wir gehen nun davon aus, dass wir uns am Standort des grünen Haus-Icons befinden. Das ist die Koordinate 50.6254, 8.20765.

Darstellung von Haltestellen-Koordinaten

Wenn wir uns an dieser Position befinden und von der Haltestelle Marktplatz sprechen, dann wird voraussichtlich der Marktplatz mit der ID de:06532:19698 in Driedorf gemeint sein.

Lassen wir die beiden Varianten des Algorithmus gegeneinander antreten:

Tabelle zur Optimierung durch standortabhängigen KI Algorithmus

Die standortabhängige Variante des Algorithmus liefert uns in annähernd der gleichen Zeit das perfekte Ergebnis. Somit können wir effizient die Haltestellen so erkennen, dass wir die Absicht des Nutzenden bedienen können, um mit den IDs eine Verbindungsauskunft anzufragen und auszugeben.

Fazit

Wir haben in diesem Artikel gezeigt, wie wir das spezifische Problem einer korrekten Erkennung und Zuordnung einer Haltestelle im natürlichsprachlichen Anwendungsfall lösen. Die bisherigen Möglichkeiten, die sich an einer grafischen Oberfläche orientieren, in der Nutzende selbst in einer Vorschlagsliste die richtige Haltestelle raussuchen müssen, funktionieren natürlichsprachlich nicht. Das entwickelte Verfahren und der KI Algorithmus löst dieses Problem und ist für die Akzeptanz und Qualität von sprachlichen Systemen essenziell. Ein weiterer positiver Nebeneffekt ist, dass sich die Ausführungszeit der gesamten Anfrage durch die schnellere Erkennung verkürzt. Das ist vor allem im Kontext von Sprachassistenten von besonderer Bedeutung, da sich dort schnelle Reaktionen sehr positiv und natürlich im Gespräch anfühlen.

Kurz zusammengefasst

What is Webflow and why is it the best website builder?

Vitae congue eu consequat ac felis placerat vestibulum lectus mauris ultrices. Cursus sit amet dictum sit amet justo donec enim diam porttitor lacus luctus accumsan tortor posuere.

What is your favorite template from BRIX Templates?

Vitae congue eu consequat ac felis placerat vestibulum lectus mauris ultrices. Cursus sit amet dictum sit amet justo donec enim diam porttitor lacus luctus accumsan tortor posuere.

How do you clone a template from the Showcase?

Vitae congue eu consequat ac felis placerat vestibulum lectus mauris ultrices. Cursus sit amet dictum sit amet justo donec enim diam porttitor lacus luctus accumsan tortor posuere.

Why is BRIX Templates the best Webflow agency?

Vitae congue eu consequat ac felis placerat vestibulum lectus mauris ultrices. Cursus sit amet dictum sit amet justo donec enim diam porttitor lacus luctus accumsan tortor posuere.

When was Webflow officially launched?

Vitae congue eu consequat ac felis placerat vestibulum lectus mauris ultrices. Cursus sit amet dictum sit amet justo donec enim diam porttitor lacus luctus accumsan tortor posuere.

How do you integrate Jetboost with Webflow?

Vitae congue eu consequat ac felis placerat vestibulum lectus mauris ultrices. Cursus sit amet dictum sit amet justo donec enim diam porttitor lacus luctus accumsan tortor posuere.

What is Webflow and why is it the best website builder?

Vitae congue eu consequat ac felis placerat vestibulum lectus mauris ultrices. Cursus sit amet dictum sit amet justo donec enim diam porttitor lacus luctus accumsan tortor posuere.

What is your favorite template from BRIX Templates?

Vitae congue eu consequat ac felis placerat vestibulum lectus mauris ultrices. Cursus sit amet dictum sit amet justo donec enim diam porttitor lacus luctus accumsan tortor posuere.

How do you clone a template from the Showcase?

Vitae congue eu consequat ac felis placerat vestibulum lectus mauris ultrices. Cursus sit amet dictum sit amet justo donec enim diam porttitor lacus luctus accumsan tortor posuere.

Why is BRIX Templates the best Webflow agency?

Vitae congue eu consequat ac felis placerat vestibulum lectus mauris ultrices. Cursus sit amet dictum sit amet justo donec enim diam porttitor lacus luctus accumsan tortor posuere.

When was Webflow officially launched?

Vitae congue eu consequat ac felis placerat vestibulum lectus mauris ultrices. Cursus sit amet dictum sit amet justo donec enim diam porttitor lacus luctus accumsan tortor posuere.

How do you integrate Jetboost with Webflow?

Vitae congue eu consequat ac felis placerat vestibulum lectus mauris ultrices. Cursus sit amet dictum sit amet justo donec enim diam porttitor lacus luctus accumsan tortor posuere.

Entdecken
Zurück zur Stories-Übersicht
Startet euer Projekt mit uns!
Wir freuen uns auf euch!
Bild vom Geschäftsführenden Gesellschafter Henrik Johannsen
Deine Ansprechperson
Henrik Johannsen
Kontakt
Teaser Bild der Story oder des Projektes
Digitale Assistenten am Telefon
Digitale Assistenten am Telefon
Digitale Assistenten am Telefon
Digitale Assistenten am Telefon
Digitale KI Assistenten

Kann eine Ameise eigentlich telefonieren? Der Verkehrsbetrieb in Bielefeld (moBiel GmbH) war einer der ersten, die sich gemeinsam mit uns auf den spannenden Weg der Digitalen Assistenten im ÖPNV gemacht haben.

EntdeckenEntdecken
Entdecken
Teaser Bild der Story oder des Projektes
Weshalb unsere NLU besser ist als die von Amazon und Google
Weshalb unsere NLU besser ist als die von Amazon und Google
Weshalb unsere NLU besser ist als die von Amazon und Google
Weshalb unsere NLU besser ist als die von Amazon und Google
Digitale KI Assistenten

Unsere Digitale-Assistenten-Expertin Corinna erklärt, weshalb es sich lohnt, die Natural Language Understanding (NLU) von Amazon und Google zu umgehen.

EntdeckenEntdecken
Entdecken

Kontakt

Wir freuen uns auf euch!

Bild vom Geschäftsführenden Gesellschafter Henrik Johannsen
Deine Ansprechperson
Henrik Johannsen
PROJEKTIONISTEN® GmbH
Schaufelder Straße 11
30167 Hannover
Vielen Dank für deine Nachricht! Wir werden uns so schnell wie möglich bei dir melden.
Ihre Nachricht konnte nicht gesendet werden. Schreibe uns bitte per Mail (info@projektionisten.de).